Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9243, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649395

RESUMEN

A crucial step in the clinical adaptation of an AI-based tool is an external, independent validation. The aim of this study was to investigate brain atrophy in patients with confirmed, progressed Huntington's disease using a certified software for automated volumetry and to compare the results with the manual measurement methods used in clinical practice as well as volume calculations of the caudate nuclei based on manual segmentations. Twenty-two patients were included retrospectively, consisting of eleven patients with Huntington's disease and caudate nucleus atrophy and an age- and sex-matched control group. To quantify caudate head atrophy, the frontal horn width to intercaudate distance ratio and the intercaudate distance to inner table width ratio were obtained. The software mdbrain was used for automated volumetry. Manually measured ratios and automatically measured volumes of the groups were compared using two-sample t-tests. Pearson correlation analyses were performed. The relative difference between automatically and manually determined volumes of the caudate nuclei was calculated. Both ratios were significantly different between the groups. The automatically and manually determined volumes of the caudate nuclei showed a high level of agreement with a mean relative discrepancy of - 2.3 ± 5.5%. The Huntington's disease group showed significantly lower volumes in a variety of supratentorial brain structures. The highest degree of atrophy was shown for the caudate nucleus, putamen, and pallidum (all p < .0001). The caudate nucleus volume and the ratios were found to be strongly correlated in both groups. In conclusion, in patients with progressed Huntington's disease, it was shown that the automatically determined caudate nucleus volume correlates strongly with measured ratios commonly used in clinical practice. Both methods allowed clear differentiation between groups in this collective. The software additionally allows radiologists to more objectively assess the involvement of a variety of brain structures that are less accessible to standard semiquantitative methods.


Asunto(s)
Núcleo Caudado , Aprendizaje Profundo , Enfermedad de Huntington , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/patología , Estudios Retrospectivos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Atrofia/patología , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Programas Informáticos , Tamaño de los Órganos , Procesamiento de Imagen Asistido por Computador/métodos
2.
J Neurointerv Surg ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648432

RESUMEN

BACKGROUND: Subarachnoid hyperdensities after mechanical thrombectomy (MT) are a common finding. However, it is often regarded as clinically insignificant. OBJECTIVE: With this single-center investigation, to identify the prevalence of subarachnoid hyperdensities following MT, associated predictors, and the impact on the clinical outcome of the patients. METHODS: 383 patients from the stroke registry were analyzed for the presence of subarachnoid hyperdensities on flat detector CT (FDCT) directly after the completion of MT, and on follow-up dual-energy CT, then classified according to a visual grading scale. 178 patients were included with anterior circulation occlusions. Regression analysis was performed to identify significant predictors, and Kruskal-Wallis analysis and Χ2 test were performed to test the variables among the different groups. The primary outcome was the modified Rankin Scale (mRS) score at 90 days and was analyzed with the Wilcoxon-Mann-Whitney rank-sum test. RESULTS: The prevalence of subarachnoid hyperdensities on FDCT was (66/178, 37.1%) with patients experiencing a significant unfavorable outcome (P=0.035). Significantly fewer patients with subarachnoid hyperdensities achieved a mRS score of ≤3 at 90 days 25/66 (37.9%) vs 60/112 (53.6%), P=0.043). In addition, mortality was significantly higher in the subarachnoid hyperdensities group (34.8% vs 19.6%, P=0.024). Distal occlusions and a higher number of device passes were significantly associated with subarachnoid hyperdensities (P=0.026) and (P=0.001), respectively. Patients who received intravenous tissue plasminogen activator had significantly fewer subarachnoid hyperdensities (P=0.029). CONCLUSIONS: Postinterventional subarachnoid hyperdensities are a frequent finding after MT and are associated with neurological decline and worse functional outcome. They are more common with distal occlusions and multiple device passes.

3.
Diagnostics (Basel) ; 13(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37238200

RESUMEN

Cohort studies that quantify volumetric brain data among individuals with different levels of COVID-19 severity are presently limited. It is still uncertain whether there exists a potential correlation between disease severity and the effects of COVID-19 on brain integrity. Our objective was to assess the potential impact of COVID-19 on measured brain volume in patients with asymptomatic/mild and severe disease after recovery from infection, compared with healthy controls, using artificial intelligence (AI)-based MRI volumetry. A total of 155 participants were prospectively enrolled in this IRB-approved analysis of three cohorts with a mild course of COVID-19 (n = 51, MILD), a severe hospitalised course (n = 48, SEV), and healthy controls (n = 56, CTL) all undergoing a standardised MRI protocol of the brain. Automated AI-based determination of various brain volumes in mL and calculation of normalised percentiles of brain volume was performed with mdbrain software, using a 3D T1-weighted magnetisation-prepared rapid gradient echo (MPRAGE) sequence. The automatically measured brain volumes and percentiles were analysed for differences between groups. The estimated influence of COVID-19 and demographic/clinical variables on brain volume was determined using multivariate analysis. There were statistically significant differences in measured brain volumes and percentiles of various brain regions among groups, even after the exclusion of patients undergoing intensive care, with significant volume reductions in COVID-19 patients, which increased with disease severity (SEV > MILD > CTL) and mainly affected the supratentorial grey matter, frontal and parietal lobes, and right thalamus. Severe COVID-19 infection, in addition to established demographic parameters such as age and sex, was a significant predictor of brain volume loss upon multivariate analysis. In conclusion, neocortical brain degeneration was detected in patients who had recovered from SARS-CoV-2 infection compared to healthy controls, worsening with greater initial COVID-19 severity and mainly affecting the fronto-parietal brain and right thalamus, regardless of ICU treatment. This suggests a direct link between COVID-19 infection and subsequent brain atrophy, which may have major implications for clinical management and future cognitive rehabilitation strategies.

5.
Diagnostics (Basel) ; 11(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069362

RESUMEN

Our objective was to evaluate the diagnostic performance of a convolutional neural network (CNN) trained on multiple MR imaging features of the lumbar spine, to detect a variety of different degenerative changes of the lumbar spine. One hundred and forty-six consecutive patients underwent routine clinical MRI of the lumbar spine including T2-weighted imaging and were retrospectively analyzed using a CNN for detection and labeling of vertebrae, disc segments, as well as presence of disc herniation, disc bulging, spinal canal stenosis, nerve root compression, and spondylolisthesis. The assessment of a radiologist served as the diagnostic reference standard. We assessed the CNN's diagnostic accuracy and consistency using confusion matrices and McNemar's test. In our data, 77 disc herniations (thereof 46 further classified as extrusions), 133 disc bulgings, 35 spinal canal stenoses, 59 nerve root compressions, and 20 segments with spondylolisthesis were present in a total of 888 lumbar spine segments. The CNN yielded a perfect accuracy score for intervertebral disc detection and labeling (100%), and moderate to high diagnostic accuracy for the detection of disc herniations (87%; 95% CI: 0.84, 0.89), extrusions (86%; 95% CI: 0.84, 0.89), bulgings (76%; 95% CI: 0.73, 0.78), spinal canal stenoses (98%; 95% CI: 0.97, 0.99), nerve root compressions (91%; 95% CI: 0.89, 0.92), and spondylolisthesis (87.61%; 95% CI: 85.26, 89.21), respectively. Our data suggest that automatic diagnosis of multiple different degenerative changes of the lumbar spine is feasible using a single comprehensive CNN. The CNN provides high diagnostic accuracy for intervertebral disc labeling and detection of clinically relevant degenerative changes such as spinal canal stenosis and disc extrusion of the lumbar spine.

6.
Diagnostics (Basel) ; 12(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35054245

RESUMEN

Vertebral Modic type 1 (MT1) degeneration may mimic infectious disease on conventional spine magnetic resonance imaging (MRI), potentially leading to additional costly and invasive investigations. This study evaluated the diagnostic performance of the proton density fat fraction (PDFF) for distinguishing MT1 degenerative endplate changes from infectious spondylitis. A total of 31 and 22 patients with equivocal diagnosis of MT1 degeneration and infectious spondylitis, respectively, were retrospectively enrolled in this IRB-approved retrospective study and examined with a chemical-shift encoding (CSE)-based water-fat 3D six-echo modified Dixon sequence in addition to routine clinical spine MRI. Diagnostic reference standard was established according to histopathology or clinical and imaging follow-up. Intravertebral PDFF [%] and PDFFratio (i.e., vertebral endplate PDFF/normal vertebrae PDFF) were calculated voxel-wise within the single most prominent edematous bone marrow lesion per patient and examined for differences between MT1 degeneration and infectious spondylitis. Mean PDFF and PDFFratio of infectious spondylitis were significantly lower compared to MT1 degenerative changes (mean PDFF, 4.28 ± 3.12% vs. 35.29 ± 17.15% [p < 0.001]; PDFFratio, 0.09 ± 0.06 vs. 0.67 ± 0.37 [p < 0.001]). The areas under the curve (AUC) and diagnostic accuracies were 0.977 (p < 0.001) and 98.1% (cut-off at 12.9%) for PDFF and 0.971 (p < 0.001) and 98.1% (cut-off at 0.27) for PDFFratio. Our data suggest that quantitative evaluation of vertebral PDFF can provide a high diagnostic accuracy for differentiating erosive MT1 endplate changes from infectious spondylitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...